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Abstract TOPSIS is a popular used model for multiple
attribute decision-making problems. Recently, Chen and Lee
(Exp Syst Appl 37(4):2790–2798, 2010) extended TOPSIS
method to interval type-2 fuzzy sets (IT2 FSs) environment.
They first compute the ranking values of the elements in
fuzzy-weighted decision matrix, and used the ranking val-
ues to compute the crisp relative closeness through tradi-
tional TOPSIS computing process. Such ranking computa-
tion leads to the information loss of the weighted decision
matrix. In this paper, we introduce an analytical solution to
IT2 FSs-based TOPSIS model. First, we propose the frac-
tional nonlinear programming (NLP) problems for fuzzy
relative closeness. Second, based on Karnik–Mendel (KM)
algorithm, the switch points of the NLP models are identified,
and the analytical solution to IT2 FSs-based TOPSIS model
can be obtained. Compared with Chen and Lee’s method,
the proposed method operates the IT2 FSs directly and keeps
the IT2 FSs formats in the whole process, and the result of
which is precise in analytical form. In addition, some prop-
erties of the proposed analytical method are discussed, and
the computing process is summarized as well. To illustrate
the analytical solution, an example is given and the result
is compared with that of Chen and Lee’s method (Exp Syst
Appl 37(4):2790–2798, 2010).
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1 Introduction

The fuzzy set theory introduced by Zadeh (1965) has
achieved a great success in various fields. Later, Zadeh (1975)
introduced the type-2 fuzzy sets (T2 FSs), which was an
extension of the fuzzy set, and the membership values are
type-1 fuzzy sets on interval [0, 1]. Mendel (2001) further
generalized the interval fuzzy set and defined the notion of
IT2 FSs, which has been found useful to deal with vague-
ness and uncertainty in decision problems, such as perceptual
computing (Mendel and Wu 2010; Mendel et al. 2010), con-
trol system (Wu and Tan 2006; Wagner and Hagras 2010;
Wu 2012), time-series forecasting (Khosravi et al. 2012;
Chakravarty and Dash 2012; Miller et al. 2012), informa-
tion aggregation (Zhou et al. 2010, 2011; Huang et al. 2014)
and decision-making (Chen and Lee 2010; Wang et al. 2012;
Chen and Wang 2013).

MADM is a widespread method, which is applied to find
the most desirable alternatives according to the information
about attributes and weights provided by decision makers
(Damghani et al. 2013; Xu 2010). TOPSIS, introduced by
Yoon and Hwang (1981), uses the similarity to ideal solution
to solve MADM problems, where the performance ratings
and weights are given as crisp values. Later, Triantaphyl-
lou and Lin (1996) introduced fuzzy TOPSIS method based
on fuzzy arithmetic operations. Chen (2000) extended TOP-
SIS method to fuzzy group decision-making situations. Wang
and Elhag (2006) proposed a fuzzy TOPSIS method based on
alpha level sets. Wang and Lee (2007) generalized TOPSIS
method in fuzzy MADM environment. Chen and Tsao (2008)
and Ashtiani et al. (2009) extended the TOPSIS method
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to interval-valued fuzzy numbers environment. Boran et al.
(2009) proposed an intuitionistic fuzzy TOPSIS method for
supplier selection problem. Li (2010) proposed TOPSIS-
based NLP methodology with interval-valued intuitionistic
fuzzy sets. Tan (2011) introduced a multi-criteria interval-
valued intuitionistic fuzzy group decision-making method
using Choquet integral-based TOPSIS method. Robin-
son and AmirtharajE (2011) developed TOPSIS method
under triangular intuitionistic fuzzy sets. Behzadian et al.
(2012) summarized the research on TOPSIS applications
and methodologies. In addition to the developments of
fuzzy TOPSIS in traditional type-1 fuzzy formats, a notable
progress was the appearance of interval type-2 fuzzy TOP-
SIS method proposed by Chen and Lee (2010). They first
computed the ranking values of the IT2 FSs elements in
weighted decision matrix, then counted the crisp relative dis-
tance through traditional TOPSIS computing process. How-
ever, both the defuzzification from the very beginning and
the crisp distance computation are approximate, which do
not realize the IT2 FSs formats crossing the whole comput-
ing process, and lead to decision information loss.

In this paper, we provide an analytical solution to IT2
FSs-based TOPSIS model with KM algorithm. KM algo-
rithm (Karnik and Mendel 2001) is a kind of the standard
way to compute the centroid and perform type reduction for
type-2 fuzzy sets and systems (Hagras 2007; Mendel 2007a,
2013). It transforms the fractional nonlinear programming
problems into identifying the switch points of α levels, which
is monotonically and superexponentially convergent to the
optimal solution (Mendel and Liu 2007). Some applications
of KM algorithm in decision-making have also been pro-
posed. Wu and Mendel (2007) used the KM algorithm to
compute the linguistic weighted average (LWA) of type-2
fuzzy sets. Liu and Mendel (2008) proposed a new α-cut
algorithm for solving the fuzzy weighted averaging (FWA)
problem with the KM algorithm. Liu et al. (2012) proposed
the analytical solution to FWA with KM algorithm. Liu and
Wang (2013) introduced the analytical solution to general-
ized FWA with KM algorithm as well.

Based on KM algorithm (Karnik and Mendel 2001; Liu
et al. 2012), we propose an analytical solution to the TOP-
SIS model with IT2 FSs variables. First, similar to the
case of type-1 fuzzy TOPSIS method (Kao and Liu 2001;
Li et al. 2009), we transform the IT2 FSs TOPSIS model
into several interval fractional NLP problems with α lev-
els for finding the fuzzy relative closeness among the alter-
natives. Then, we use the KM algorithm to identify the
switch points of the interval fractional NLP problems with
α levels. The switch points are the optimal values of the
interval parameters, which can be used to directly express
the optimal solutions to the interval fractional NLP prob-
lems in an analytical way. Finally, we propose a computa-
tional procedure to obtain the analytical solution to IT2 FSs-

based TOPSIS method. Compared with the current interval
type-2 fuzzy TOPSIS method proposed by Chen and Lee
(2010), it realizes the actual sense of IT2 FSs-based TOP-
SIS method computation, as the defuzzification of the fuzzy
relative closeness is dealt with at the end of the comput-
ing process, not from the very beginning. It is accurate,
as the fractional NLP problem considers all the conditions
when computing the IT2 FSs-based fuzzy relative close-
ness, and all the switch points are identified through expres-
sions.

The paper is organized as follows. Section 2 introduces
the concept of IT2 FSs, KM algorithm and fuzzy TOPSIS
method. Section 3 proposes the fractional NLP models of
IT2 FSs-based TOPSIS model with KM algorithm. Sec-
tion 4 introduces the analytical solution to IT2 FSs-based
TOPSIS model, and discusses some properties of it. Sec-
tion 5 illustrates a MADM problem under IT2 FSs envi-
ronment, and compares the results with that of the original
method. Section 6 summarizes the main results and draws
conclusions.

2 Preliminaries

In this section, we introduce the concepts of IT2 FSs, KM
algorithm and the process of computing fuzzy TOPSIS
method.

2.1 IT2 FSs and KM algorithm

2.1.1 IT2 FSs

The type-2 fuzzy sets are characterized by a fuzzy member-
ship function, where the membership value is a fuzzy set in
[0, 1], not a crisp number.

Definition 1 Zadeh (1975) The type-2 fuzzy sets are repre-
sented by a type-2 membership function μ ˜̃A, which can be
shown as:

˜̃A =
∫

x∈X

∫
u∈Jx

μ ˜̃A(x, μ)/(x, u)

=
∫

x∈X

[∫
u∈Jx

μ ˜̃A(x, μ)/(x, u)

]/
x,

where x is the primary variable, Jx ∈ [0, 1] is the pri-
mary membership of x , u is the secondary variable, and∫

u∈Jx
μ ˜̃A(x, μ)/(x, u) is the secondary membership func-

tion at x .

Mendel (2001) generalized the interval fuzzy set and
defined the notion of IT2 FSs, which are defined as follows.
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Fig. 1 The sample of interval type-2 fuzzy sets

Definition 2 Mendel (2001) The IT2 FSs ˜̃A is an objective,
which has the parametric form as:

˜̃A =
∫

x∈X

∫
u∈Jx

1/(x, u) =
∫

x∈X

[∫
u∈Jx

1/(x, u)

]/
x,

where x is the primary variable, Jx ∈ [0, 1] is the pri-
mary membership of x , u is the secondary variable, and∫

u∈Jx
1/(x, u) is the secondary membership function at x .

Definition 3 Mendel (2007b) For the IT2 FSs ˜̃A, the foot-

print of uncertainty of ˜̃A(FOU(
˜̃A)) is defined as:

FOU(
˜̃A) =

⋃
x∈X

Jx = {(x, y) : y ∈ Jx = [ ÃU (x), ÃL(x)]},

(1)

where FOU is shown as the shaded region in Fig. 1. It is
bounded by an upper membership function (UMF) ÃU (x)

and a lower membership function (LMF) ÃL(x).

Definition 4 Lee and Chen (2008) Suppose ˜̃Ai be an trape-

zoidal IT2 FSs shown in Fig. 1, where ˜̃Ai =
(
(xU

i1, xU
i2, xU

i3, xU
i4;

H1( ÃU
i ), H2( ÃU

i )), (x L
i1, x L

i2, x L
i3, x L

i4; H1( ÃL
i ), H2( ÃL

i ))),

the ranking value Rank(
˜̃Ai ) can be defined as Eq. (2).

Rank(
˜̃Ai ) = M1( ÃU

i ) + M1( ÃL
i ) + M2( ÃU

i ) + M2( ÃL
i )

+ M3( ÃU
i ) + M3( ÃL

i ) − 1

4

(
S1( ÃU

i )

+S1( ÃL
i ) + S2( ÃU

i ) + S2( ÃL
i )

+S3( ÃU
i ) + S3( ÃL

i ) + S4( ÃU
i ) + S4( ÃL

i )
)

+ H1( ÃU
i ) + H1( ÃL

i ) + H2( ÃU
i ) + H2( ÃL

i ),

(2)

In Eq. (2), Mp( ÃL
i ) denotes the average of elements x j

ip

and x j
i(p+1), Mp( Ã j

i ) = x j
ip+x j

i(p+1)

2 , p = 1, 2, 3. Sq( Ã j
i )

denotes the standard deviation of elements x j
iq and x j

i(q+1),

Sq( Ã j
i ) =

√
1
2

∑q+1
k=q

(
x j

ik − Mq( Ã j
i )
)2

, q = 1, 2, 3.

S4( Ã j
i ) =

√
1
4

∑4
k=1

(
(x j

ik)
2 − 1

4

∑4
k=1 x j

ik

)2
denotes the

standard deviation of elements x j
ik (k = 1, 2, 3, 4), j ∈

{U, L}. Hp( Ã j
i ) denotes the membership value of element

x j
p+1 in trapezoidal membership function Ã j

i , p = 1, 2,
j ∈ {U, L}, i = 1, 2, . . . , n.

It is obvious that IT2 FSs is the simplest form of type-2
fuzzy sets. In this paper, we just discuss the TOPSIS method
under IT2 FSs environment.

2.1.2 KM algorithm

KM algorithm (Karnik and Mendel 2001) is a type reduction
method in IT2 FSs, which was originally used to compute the
centroid of IT2 FSs. The principle of which can be described
as follows.

Definition 5 Mendel and Liu (2007) For an interval type-2
fuzzy set Ã, the centroid cÃ = [cl , cr ] can be defined as the
maximum and minimum solutions to the following interval
fractional programming, respectively.

y(θ1, θ2, . . . , θn) �

n∑
i=1

xiθi

n∑
i=1

θi

, (3)

where xi s are increasing in the domain X , and θi can be
changed between the lower membership function (LMF)
μ

Ã
(xi ) and upper membership function (UMF) μ Ã(xi ).

The derivative of function y(θ1, θ2, . . . , θn) with variable
θk(k = 1, 2, . . . , n) is denoted as:

∂y(θ1, θ2, . . . , θn)

∂θk
= ∂

∂θk

⎛
⎜⎜⎝
∑n

i=1 xiθi
n∑

i=1
θi

⎞
⎟⎟⎠

= xk − y(θ1, θ2, . . . , θn)
n∑

i=1
θi

. (4)

In Eq. (4), because of
∑n

i=1 θi > 0, it is concluded that
xk is the switch point, which determines the monotonicity of
function y(θ1, θ2, . . . , θn). That is if
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xk ≥ y(θ1, θ2, . . . , θn), y(θ1, θ2, . . . , θn)

monotonically increases with xk;
xk < y(θ1, θ2, . . . , θn), y(θ1, θ2, . . . , θn)

monotonically decreases with xk .

(5)

According to Eq. (5), suppose the maximum (minimum)
of θk is μ Ã(xi )(μ Ã

(xi )), it is implied that y(θ1, θ2, . . . , θn)

reaches the minimum, i.e., yL , if (1) for those values of k,
it follows xk < y(θ1, θ2, . . . , θn), such that θk = μ Ã(xi );
(2) for those values of k, it follows xk > y(θ1, θ2, . . . , θn),
such that θk = μ

Ã
(xi ). Similarly, it can easily be deduced

that y(θ1, θ2, . . . , θn) reaches the maximum, i.e., yU , if (1)
for those values of k, it follows xk > y(θ1, θ2, . . . , θn), such
that θk = μ Ã(xi ); (2) for those values of k, it follows xk <

y(θ1, θ2, . . . , θn), such that θk = μ
Ã
(xi ). Combined with

these conclusions together, it is easy to verify that yL or yU

switch only once between μ Ã(xi ) and μ
Ã
(xi ).

Coupled with these facts altogether, the centroid of IT2
FSs Ã, cÃ = [cl , cr ], can be computed as:

cl =
∑kl

i=1 xiμ Ã(xi ) +∑N
i=kl+1 xiμ Ã

(xi )∑kl
i=1 μ Ã(xi ) +∑N

i=kl+1 μ
Ã
(xi )

(6)

cr =
∑kr

i=1 xiμ Ã
(xi ) +∑N

i=kr +1 xiμ Ã(xi )∑kr
i=1 μ

Ã
(xi ) +∑N

i=kr +1 μ Ã(xi )
(7)

where kl and kr are called “switch points” with xkl ≤ cl ≤
xkl+1 and xkr ≤ cr ≤ xkr +1. The determination of kl and kr

can be performed using the KM algorithm (Mendel and Liu
2007). The computation process is omitted because we only
use the principle of them.

2.2 The process of computing fuzzy TOPSIS method

2.2.1 The process of computing type-1 TOPSIS method

Suppose a fuzzy MADM problem has n alternatives A1−n ,
and m decision criteria C1−m , x̃ j i ( j = 1, 2, . . . , m; i =
1, 2, . . . , n) is the type-1 fuzzy rating of alternative A j for
criteria Ci , w̃i is the type-1 fuzzy weight for criteria Ci .

The process of computing type-1 fuzzy TOPSIS method
can be summarized as follows (Wang and Elhag 2006).

Step 1. Construct the decision matrix X̃ , and normalize

average decision matrix as ˜̄X = (x̃ j i )m×n .
Step 2. Construct the weighting matrix W̃p, and normal-

ize average weighting matrix as ˜̄W = (w̃i )1×n .
Step 3. Define the positive ideal solution and the negative
ideal solution.
Step 4. Compute the fuzzy relative closeness for alterna-
tives as below.

RC j =
√∑n

i=1(wi x ji )2

√∑n
i=1(wi x ji )2 +

√∑n
i=1(wi (x ji − 1))2

(8)

s.t. wL
i ≤ wi ≤ wU

i , i = 1, 2, . . . , n.

x L
ji ≤ x ji ≤ xU

ji , j = 1, 2, . . . , m.

As RC j is a triangular fuzzy number, the lower and upper
limits can be obtained by the following fractional NLP mod-
els:

RCL
j = min

√∑n
i=1(wi x L

ji )
2

√∑n
i=1(wi x L

ji )
2 +

√∑n
i=1(wi (x L

ji − 1))2

s.t. wL
i ≤ wi ≤ wU

i , i = 1, 2, . . . , n. (9)

RCU
j = max

√∑n
i=1(wi xU

ji )
2

√∑n
i=1(wi xU

ji )
2 +

√∑n
i=1(wi (xU

ji − 1))2

s.t. wL
i ≤ wi ≤ wU

i , i = 1, 2, . . . , n. (10)

where x ji = [xU
ji , x L

ji ] and wi = [wU
i , wL

i ] are the intervals

of x̃ j i and w̃i , and RC j =
[
RCU

j , RCL
j

]
.

Step 5. Defuzzify and rank alternatives in terms of their
relative closenesses. The bigger the RC∗

j is, the better
alternative A j .

2.2.2 The process of computing IT2 FSs TOPSIS method

Suppose a fuzzy MADM problem has n alternatives A1−n ,
and m decision criteria C1−m , ˜̃x ji is the interval type-2 fuzzy
average evaluation for alternative A j with criteria Ci , ˜̃wi is
the interval type-2 fuzzy average weighting with criteria Ci .

According to Chen and Lee (2010), the process of com-
puting IT2 FSs TOPSIS method is denoted as follows.

Step 1–3. Construct the fuzzy-weighted decision matrix
Ȳw = ( ˜̃v)m×n = ˜̃wi ⊗ ˜̃x ji ( j = 1, 2, . . . , m; i =
1, 2, . . . , n).
Step 4. Compute the ranking values of the elements
in fuzzy-weighted decision matrix Ȳw using Eq. (2),
and construct the crisp ranking-weighted decision matrix
Ȳ ∗

w = Rank( ˜̃v j i ).
Step 5. Define the positive ideal solution and the negative
ideal solution from matrix Ȳ ∗

w.
Step 6. Calculate the distances of the alternative from the
ideal solution and the negative ideal solution.
Step 7. Calculate the crisp relative closeness to the ideal
solution.
Step 8. Rank alternatives in terms of their crisp relative
closenesses. The bigger the RC∗

j is, the better alternative
A j .
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3 The fractional NLP models of IT2 FSs-based TOPSIS
method

Here, we extend the type-1 fuzzy TOPSIS method to IT2 FSs
environment. Through solving the fractional NLP models of
IT2 FSs fuzzy relative closeness with KM algorithm, the ana-
lytical solutions to IT2 FSs-based TOPSIS can be obtained.

3.1 The fractional NLP models for IT2 FSs-based TOPSIS
method

Suppose ˜̃xi and ˜̃wi are the normalized IT2 FSs, ˜̃xi ∈
[x̃U

i (α j ), x̃ L
i (α j )], ˜̃wi ∈ [w̃U

i (α j ), w̃
L
i (α j )], x̃ L

i (α j ) ∈ [air

(α j ), bil(α j )], x̃U
i (α j ) ∈ [ail(α j ), bir (α j )], w̃L

i (α j ) ∈ [cir

(α j ), dil(α j )] and w̃U
i (α j ) ∈ [cil(α j ), dir (α j )], the UMF

and LMF of which has the same maximum and minimum
membership value, respectively, are shown in Fig. 2.

Provided that the membership value of x̃ L
i (α) (w̃L

i (α))

and x̃U
i (α)(w̃U

i (α)) is denoted as hL
x̃i (α)

(hL
w̃i (α)

) and hU
x̃i (α)

(hU
w̃i (α)

), respectively. The corresponding maximum and
minimum membership value of which is denoted as hmax

and hmin, respectively. That is

hmax = max∀i∈[1,n] hU
x̃i (α) = max∀i∈[1,n] hU

w̃i (α),

hmin = min∀i∈[1,n] hL
x̃i (α) = min∀i∈[1,n] hL

w̃i (α).

According to Problem (8), the fuzzy relative closeness
of IT2 FSs-based TOPSIS method for each alternative by
solving NLP models is denoted as Problem (11), which is
also shown in Fig. 3.

˜̃RC j �

√∑n
i=1(wi x ji )2

√∑n
i=1(wi x ji )2 +

√∑n
i=1(wi (x ji − 1))2

(11)

s.t. w̃L
i (α) ≤ wi ≤ w̃R

i (α), i = 1, 2, . . . , n,

x̃ L
ji (α) ≤ x ji ≤ x̃ R

ji (α), j = 1, 2, . . . , m,

where x̃ L
ji (α)(w̃L

i (α)) is the left region of IT2 FSs ˜̃x ji ( ˜̃wi ),

x̃ R
ji (α)(w̃R

i (α)) is the right region of IT2 FSs ˜̃x ji ( ˜̃wi ),

LRC

( )RC

RC

RRC

LlRC0
LrRC RlRC RrRC

RC

minh
maxh

j
jLlRC jLrRC jRlRC jRrRC

˜ ˜

˜̃ ˜̃

˜ ˜

Fig. 3 The interval type-2 fuzzy sets of ˜̃RC

x ji (α) = [x̃ L
ji (α), x̃ R

ji (α)] and wi (α) = [w̃L
i (α), w̃R

i (α)]
are the α-level sets of ˜̃x ji and ˜̃wi .

Similar to the principle of Problems (9) and (10), the left
and right region can be obtained by solving fractional NLP
models as Problems (12) and (13), respectively.

R̃C
L
j (α) � min

√
n∑

i=1
(wi x̃ L

ji (α))2

√
n∑

i=1
(wi x̃ L

ji (α))2+
√

n∑
i=1

(wi (x̃ L
ji (α)−1))2

s.t. w̃L
i (α)≤wi ≤ w̃R

i (α), i = 1, 2, . . . , n.

(12)

R̃C
R
j (α)�max

√
n∑

i=1
(wi x̃ R

ji (α))2

√
n∑

i=1
(wi x̃ R

ji (α))2+
√

n∑
i=1

(wi (x̃ R
ji (α)−1))2

s.t. w̃L
i (α)≤wi ≤ w̃R

i (α), i = 1, 2, . . . , n.

(13)

where x̃ L
ji (α) = [a jil(α), a jir (α)], x̃ R

ji (α) = [b jil(α),

b jir (α)], w̃L
i (α) = [cil(α), cir (α)] and w̃R

i (α) = [dil(α),

dir (α)].
It is obvious that ˜̃RC j (α) = [R̃C

L
j (α), R̃C

R
j (α)] can be

generated by solving NLP Problems (12) and (13).

( )x

xla rbra lb0

jla jra jrbjlbja jbj

( )w

wlc rdrc ld

jlc jrc jrdjldjc jd

minh
maxh

ix iw

L
ix

U
ix

( )iFOU x

L
iw

U
iw

( )iFOU w

0

˜̃

˜̃
˜

˜

˜̃
˜

˜̃

˜

Fig. 2 The interval type-2 fuzzy sets of ˜̃xi and ˜̃wi
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According to Eq. (8), the final interval type-2 fuzzy rela-
tive closeness ˜̃RC j (α) can be expressed as:

˜̃RC j =
⋃
α

[R̃C
L
j (α), R̃C

R
j (α)], 0 < α ≤ 1, (14)

Next, we introduce a new NLP problem, through which the
optimal solution to Problems (12) and (13) can be computed
indirectly.

Theorem 1 For ˜̃x and ˜̃w is the IT2 FSs-based aggregated
element and weight, respectively. Let

˜̃f j �

n∑
i=1

( ˜̃wi ( ˜̃x ji − 1)
)2

n∑
i=1

( ˜̃wi ˜̃x ji )2
,

s.t. w̃L
i (α) ≤ ˜̃wi ≤ w̃R

i (α), i = 1, 2, . . . , n,

x̃ L
ji (α) ≤ ˜̃x ji ≤ x̃ R

ji (α), j = 1, 2, . . . , m. (15)

if ˜̃x ji = x̃ L
ji and x̃ L

ji reaches its minimum (maximum) point,

then the left region f̃ L(α) and R̃C
L
(α) obtain its maximum

(minimum) and minimum (maximum) values correspond-
ingly; otherwise, if ˜̃x ji = x̃ R

ji and x̃ R
ji reaches at minimum

(maximum) point, then the right region f̃ R(α) and R̃C
R
(α)

get the maximum (minimum) and minimum (maximum) in
correspondence.

Proof See Appendix A. �	

From the conclusions of Theorem 1, it is evident to see
that the optimal solution to Problem (11) can be realized if
Problem (15) holds.

Accordingly, the optimal solutions to Problems (12) and
(13) can be computed by solving Problems (16) and (17)
indirectly.

f̃ ∗L
j (α) � min

n∑
i=1

(
wi (x̃ L

ji (α) − 1)
)2

n∑
i=1

(wi x̃ L
ji (α))2

,

s.t. w̃L
i (α) ≤ wi ≤ w̃R

i (α), i = 1, 2, . . . , n. (16)

f̃ ∗R
j (α) � max

n∑
i=1

(
wi (x̃ R

ji (α) − 1)
)2

n∑
i=1

(wi x̃ R
ji (α))2

,

s.t. w̃L
i (α) ≤ wi ≤ w̃R

i (α), i = 1, 2, . . . , n. (17)

Then, the fuzzy relative closeness of IT2 FSs-based TOP-
SIS method can be obtained through solving Eqs. (18), (19).

R̃C
∗L

(α) � 1

1 +
√

f̃ ∗L(α)

, (18)

R̃C
∗R

(α) � 1

1 +
√

f̃ ∗R(α)

. (19)

3.2 The fractional NLP models of IT2 FSs-based TOPSIS
method with KM algorithm

Here, we prove Problem (15) satisfies the principle of KM
algorithm.

Let us rewrite the objective function of Problem (15) into

the relation between ˜̃f ( ˜̃w j ) and ˜̃w j , and get

˜̃f ( ˜̃w1, ˜̃w2, . . . , ˜̃wn) =

m∑
j=1

( ˜̃w j (x j − 1)
)2

m∑
j=1

( ˜̃w j x j )2
.

Then, the derivative of ˜̃f ( ˜̃w1, ˜̃w2, . . . , ˜̃wn) to ˜̃wk(k =
1, 2, . . . , n) can be expressed as:

∂
˜̃f ( ˜̃w1, ˜̃w2, . . . , ˜̃wn)

∂ ˜̃wk

= 2 ˜̃wk(xk − 1)2 − 2 ˜̃wk x2
k f ( ˜̃w1, ˜̃w2, . . . , ˜̃wn)

m∑
j=1

( ˜̃w j x j )2
. (20)

From Eq. (20), it is obvious that

∂
˜̃f ( ˜̃w1, ˜̃w2, . . . , ˜̃wn)

∂ ˜̃wi⎧⎨
⎩

≥ 0, if (xk−1)2

x2
k

≥ ˜̃f ( ˜̃w1, ˜̃w2, . . . , ˜̃wn),

< 0, if (xk−1)2

x2
k

<
˜̃f ( ˜̃w1, ˜̃w2, . . . , ˜̃wn)).

(21)

It is concluded that the extreme points of ˜̃f ( ˜̃w1, ˜̃w2, . . . , ˜̃wn)

can be obtained through changing the direction of weight-
ing ˜̃wk . If we compute f̃ ∗R( f̃ ∗L), ˜̃wk switches only once
between w̃R

k (α) and w̃L
k (α). Hence, the computation of the

maximum (minimum) of ˜̃f ( ˜̃w1, ˜̃w2, . . . , ˜̃wn) can be con-
verted into solving the maximum (minimum) of ˜̃wi = w̃R

k (α)

( ˜̃wi = w̃L
k (α)).

According to the principle of KM algorithm, if x̃ L
i (α)

and x̃ R
i (α) are increasingly orders, the solutions to ˜̃f ( ˜̃x) are

reduced to finding the switch points of kL and kR .
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Putting all of these facts together, problems (16) and (17)
can be transformed into Eqs. (22) and (23).

f̃ ∗L � f̃ L (α, k) � min

m∑
i=1

(wi (ãi (α) − 1))2

m∑
i=1

(wi ãi (α))2

� min

kL∑
i=1

(
d̃i (α)(ãi (α)− 1)

)2+
n∑

i=kL+1
(c̃i (α)(ãi (α)−1))2

kL∑
i=1

(
d̃i (α)ãi (α)

)2+
n∑

i= kL+1
(c̃i (α)ãi (α))2

,

(22)

f̃ ∗R � f̃ R(α, k) � max

m∑
i=1

(
wi (b̃i (α) − 1)

)2

m∑
i=1

(
wi b̃i (α)

)2

�max

kR∑
i=1

(
c̃i (α)(b̃i (α)−1)

)2+
n∑

i=kR+1

(
d̃i (α)(b̃i (α)−1)

)2

kR∑
i=1

(
c̃i (α)b̃i (α)

)2+
n∑

i=kR+1

(
d̃i (α)b̃i (α)

)2
.

(23)

In Eqs. (22), (23), ãi (α) and b̃i (α) are increasing orders;
f̃ ∗L and f̃ ∗R denotes the left region and right region of the

function ˜̃f ; kL � kL(α) and kR � kR(α), both of which are
the switch points, such that

ãkL (α) ≤ f̃ ∗L ≤ ãkL+1(α), (24)

b̃kR (α) ≤ f̃ ∗R ≤ b̃kR+1(α). (25)

As ˜̃f is a monotonically increasing function, Eqs. (22), (23)
can be changed into Eqs. (26)–(29).

f ∗
Ll(α, k) � min

∀ãi ∈[ail ,air ]
∀c̃i ∈[cil ,cir ],∀d̃i ∈[dil ,dir ]

×

kLl∑
i=1

(
d̃i (α)(ãi (α) − 1)

)2 +
n∑

i=kLl+1
(c̃i (α)(ãi (α) − 1))2

kLl∑
i=1

(
d̃i (α)ãi (α)

)2 +
n∑

i=kLl+1
(c̃i (α)ãi (α))2

� min
∀c̃i ∈[cil ,cir ]
∀d̃i ∈[dil ,dir ]

×

kLl∑
i=1

(
d̃i (α)(ail(α)−1)

)2+
n∑

i=kLl+1
(c̃i (α)(ail(α)−1))2

kLl∑
i=1

(
d̃i (α)ail(α)

)2+
n∑

i=kLl+1
(c̃i (α)ail(α))2

,

(26)

f ∗
Lr(α, k) � max

∀c̃i ∈[cil ,cir ]
∀d̃i ∈[dil ,dir ]

×

kLr∑
i=1

(
d̃i (α)(air (α)−1)

)2+
n∑

i=kLr+1
(c̃i (α)(air (α)−1))2

kLr∑
i=1

(
d̃i (α)air (α)

)2+
n∑

i=kLr+1
(c̃i (α)air (α))2

,

(27)

f ∗
Rl(α, k) � min

∀c̃i ∈[cil ,cir ]
∀d̃i ∈[dil ,dir ]

×

kRl∑
i=1

(c̃i (α)(bil(α)− 1))2+
n∑

i=kRl+1

(
d̃i (α)(bil(α) −1)

)2

kRl∑
i=1

(c̃i (α)bil(α))2+
n∑

i=kRl+1

(
d̃i (α)bil(α)

)2
,

(28)

f ∗
Rr(α, k) � max

∀c̃i ∈[cil ,cir ]
∀d̃i ∈[dil ,dir ]

×

kRr∑
i=1

(
c̃i (α)(bir (α) − 1)

)2 +
n∑

i=kRr+1

(
d̃i (α)(bir (α) − 1)

)2

kRr∑
i=1

(
c̃i (α)bir (α)

)2 +
n∑

i=kRr+1

(
d̃i (α)bir (α)

)2
,

(29)

In Eqs. (26)–(29), ail(α), air (α), bil(α) and bir (α) are
increasing orders.

Suppose the left region f̃ L(α) and the right region f̃ R(α)

can be denoted as:

f̃ L(α) = [ fLl(α), fLr(α)],
f̃ R(α) = [ fRl(α), fRr(α)].

In the following, we propose the expressions to compute
the fuzzy relative closeness for Eqs. (26)–(29).

Theorem 2 The following properties are true.

(1) In Eq. (26), fLl can be specified as Eq. (30), where ail(α)

is an increasing order, kLl is the switch point satisfying
akLl,l(α) ≤ f ∗

Ll(α, k) ≤ akLl+1,l(α).
(2) In Eq. (27), fLr can be specified as Eq. (31), where air (α)

is an increasing order, kLr is the switch point satisfying
akLr,r (α) ≤ f ∗

Lr(α, k) ≤ akLr+1,r (α).
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f ∗
Ll(α, k)

=

kLl∑
i=1

(dir (α)(ail (α) − 1))2 +
n∑

i=kLl+1
cil (α) (ail (α) − 1))2

kL l∑
i=1

(dir (α)ail (α))2 +
n∑

i=kLl+1
(cil(α)ail (α))2

,

(30)
f ∗
Lr(α, k)

=

kLr∑
i=1

(dil (α)(air (α) − 1))2 +
n∑

i=kLr+1
cir (α) (air (α) − 1))2

kL r∑
i=1

(dil (α)air (α))2 +
n∑

i=kLr+1
(cir (α)air (α))2

,

(31)
f ∗
Rl(α, k)

=

kRl∑
i=1

(cir (α)(bil (α) − 1))2 +
n∑

i=kRl+1
dil (α) (bil (α) − 1))2

kRl∑
i=1

(cir (α)cir (α))2 +
n∑

i=kRl+1
(dil (α)bil (α))2

,

(32)
f ∗
Rr(α, k)

=

kRr∑
i=1

(cil (α)(bir (α)−1))2+
n∑

i=kRr+1
dir (α) (bir (α)−1))2

kRr∑
i=1

(cil (α)bir (α))2+
n∑

i=kRr+1
(dir (α)bir (α))2

,

(33)

(3) In Eq. (28), fRl can be specified as Eq. (32), where bil (α)

is an increasing order, kRl is the switch point satisfying
bkRl,l(α) ≤ f ∗

Rl(α, k) ≤ bkRl+1,l(α).
(4) In Eq. (29), fRr can be specified as Eq. (33), where bir (α)

is an increasing order, kRr is the switch point satisfying
bkRr,r (α) ≤ f ∗

Rr(α, k) ≤ bkRr+1,r (α).

Proof See Appendix B. �	

Remark 1 In Theorem 2, there may exist intersection among
the aggregated elements in Eqs. (30)–(33). If they do, the
aggregated elements ail(α), air (α), bil(α) or bir (α) must
be ordered increasingly in each subsection with different α

levels, and write the corresponding function f ∗, respectively.

From the conclusions of Theorem 2, it can easily be seen
that k = kLl, k = kLr, k = kRl and k = kRr in Eqs. (30)–
(33) becomes the optimal solutions to Eqs. (34)–(37), respec-
tively.

fLl(α) = min
k=0,1,...,n−1

fLl(α, k), (34)

fLr(α) = max
k=0,1,...,n−1

fLr(α, k), (35)

fRl(α) = min
k=0,1,...,n−1

fRl(α, k), (36)

fRr(α) = max
k=0,1,...,n−1

fRr(α, k). (37)

Coupled with the conclusions of Theorem 1, the switch
point k = kLl, k = kLr, k = kRl and k = kRr in Eqs. (34)–(37)
is also the optimal solution to Eqs. (38)–(41), respectively. It
follows that

RCLl(α) = 1

1 + √
fLl(α)

= min
k=0,1,...,n−1

RCLl(α, k), (38)

RCLr(α) = 1

1 + √
fLr(α)

= max
k=0,1,...,n−1

RCLr(α, k), (39)

RCRl(α) = 1

1 + √
fRl(α)

= min
k=0,1,...,n−1

RCRl(α, k), (40)

RCRr(α) = 1

1 + √
fRr(α)

= max
k=0,1,...,n−1

RCRr(α, k). (41)

4 The analytical solution to IT2 FSs-based TOPSIS
model

4.1 The identification of the switch points

Next, we introduce another functions called difference func-
tions to compute the switch points in Eqs. (34)–(37).

Theorem 3 The optimal solution to Eqs. (34)–(37) with k =
kLl, k = kLr, k = kRl and k = kRr can be determined as Eqs.
(42)–(45), respectively.

(1) In Eq. (42),

dLl(α, k) =
kLl∑
i=1

(akLl+1,l(α) − ail(α))(2akLl+1,l(α)ail(α)

− akLl+1,l(α) − ail(α))(dir (α))2

+
n∑

i=kLl+2

(akLl+1,l(α) − ail(α))(2akLl+1,l(α)ail(α)

− akLl+1,l(α) − ail(α))(cil(α))2, (42)

dLl(α, k) is a decreasing function with respect to k(k =
0, 1, . . . , n − 1), and there exists k = kLl(kLl =
1, 2, . . . , n − 1), such that dLl(α, kLl − 1) ≥ 0 and
dLl(α, kLl) < 0. So, kLl is the optimal solution to Eq.
(34), i.e., kLl = k∗. Moreover, when k = 0, 1, . . . , kLl,
f (α, k) is an increasing function concerning k; when
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k = kLl, kLl + 1, . . . , n, f (α, k) is a decreasing func-
tion with respect to k. So, kLl is the global maximum
solution to Eq. (34) with fLl(α) = f (α, kLl).

(2) In Eq. (43),

dLr(α, k) =
kLr∑
i=1

(akLr+1,r (α) − air (α))(2akLr+1,r (α)air (α)

− akLr+1,r (α) − air (α))(dil(α))2

+
n∑

i=kLr+2

(akLr+1,r (α)−air (α))

×(2akLr+1,r (α)air (α)

− akLr+1,r (α) − air (α))(cir (α))2, (43)

dLr(α, k) is a decreasing function with respect to k(k =
0, 1, . . . , n − 1), and there exists k = kLr(kLr =
1, 2, . . . , n − 1), such that dLr(α, kLr − 1) ≥ 0 and
dLr(α, kLr) < 0. So, kLr is the optimal solution to Eq.
(35), i.e., kLr = k∗. Moreover, when k = 0, 1, . . . , kLr,
f (α, k) is an increasing function concerning k; when
k = kLr, kLr + 1, . . . , n, f (α, k) is a decreasing func-
tion with respect to k. So, kLr is the global maximum
solution to Eq. (35) with fLr(α) = f (α, kLr).

(3) In Eq. (44),

dRl(α, k) = −
kRl∑
i=1

(bkRl+1,l(α) − bil(α))

(2bkRl+1,l(α)bil(α)

− bkRl+1,l(α) − bil(α))(cir (α))2

−
n∑

i=kRl+2

(bkRl+1,l(α) − bil(α))

×(2bkRl+1,l(α)bil(α)

− bkRl+1,l(α) − bil(α))(dil(α))2, (44)

dRl(α, k) is an increasing function with respect to k(k =
0, 1, . . . , n − 1), and there exists k = kRl(kRl =
1, 2, . . . , n − 1), such that dRl(α, kRl − 1 ≤ 0) and
dRl(α, kRl > 0). Hence, kRl is the optimal solution
to Eq. (36), i.e., kRl = k∗. Moreover, when k =
0, 1, . . . , kRl, f (α, k) is a decreasing function of k; when
k = kRl, kRl + 1, . . . , n, f (α, k) is an increasing func-
tion of k. So, kRl is the global minimum solution to Eq.
(36) with fRl(α) = f (α, kRl).

(4) In Eq. (45),

dRr(α, k) = −
kRr∑
i=1

(bkRr+1,r (α) − bir (α))

× (2bkRr+1,r (α)bir (α)

− bkRr+1,r (α) − bir (α))(cil(α))2

−
n∑

i=kRr+2

(bkRr+1,r (α) − bir (α))

× (2bkRr+1,r (α)bir (α)

− bkRr+1,r (α) − bir (α))(dir (α))2, (45)

dRr(α, k) is an increasing function with respect to
k(k = 0, 1, . . . , n − 1), and there exists a value of
k = kRr(kRr = 1, 2, . . . , n − 1), such that dRr(α, kRr −
1 ≤ 0) and dRr(α, kRr > 0). Hence, k∗ is the optimal
solution to Eq. (37), i.e., kRr = k∗. Moreover, when
k = 0, 1, . . . , kRr, f (α, k) is a decreasing function of k;
when k = kRr, kRr + 1, . . . , n, f (α, k) is an increasing
function of k. So, kRr is the global minimum solution to
problem (37) with fRr(α) = f (α, kRr).

Proof See Appendix C. �	
Remark 2 In Theorem 3, the optimal solutions to Eqs. (42)–
(45) may not be unique, that is to say, there may exist mul-
tiple results of k∗ with respect to a difference function. In
that case, these optimal solutions must be located together as
continuous sequence, and have the same fuzzy relative close-
ness, which constitute the global analytical solutions to Eqs.
(30)–(33).

From the conclusions of Theorem 3, it can easily be seen
that the switch points in Eqs. (30)–(33) can be obtained by
computing the difference functions of Eqs. (42)–(45), which
are also the optimal switch points in Eqs. (38)–(41).

Combined with the conclusions of Theorem 2 and The-
orem 3, the procedure of computing fuzzy relative close-
ness for IT2 FSs-based TOPSIS method can be concluded in
Tables 1, 2.

Remark 3 As IT2 FSs is bounded by UMF ÃU (x) and LMF
ÃL(x), both of which are type-1 fuzzy sets, it is obvious
that the analytical solution to IT2 FSs-based TOPSIS method
shown in Tables 1, 2 is also applicable to type-1 fuzzy TOP-
SIS method.

4.2 The procedure of the analytical solution to IT2
FSs-based TOPSIS model

Based on the proposed process for computing fuzzy relative
closeness in Tables 1, 2, the procedure of the analytical solu-
tion to IT2 FSs-based TOPSIS method can be summarized
as follows.

Step 1. Construct the decision matrix ˜̃X , and normalize

average decision matrix as
˜̄̃
X = ( ˜̃x ji )m×n .

Step 2. Construct the weighting matrix ˜̃W , and normalize

average weighting matrix as
˜̄̃

W = ( ˜̃wi )1×n .
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Table 1 The process of

computing the UMF R̃C
U

for
IT2 FSs-based fuzzy relative
closeness

Step Algorithm for RCLl(α) Algorithm for RCRr(α)

(1) Judge whether there exists intersection
between fuzzy assessments
ail (α)(i = 1, 2, . . . , n), if they do,
divide ail (α) into different subsections,
then go to Step (2), respectively

Judge whether there exists intersection between
fuzzy assessments bir (α)(i = 1, 2, . . . , n), if they
do, divide the bir (α) into different subsections,
then go to Step (2), respectively

(2) Sort one subsection
ail (α)(i = 1, 2, . . . , n) in increasing
order

Sort one subsection bir (α)(i = 1, 2, . . . , n) in
increasing order

(3) According to Eq. (42), construct left
difference functions
dLl(α, k)(k = 0, 1, . . . , n − 1)

According to Eq. (45), construct right difference
functions dRr(α, k)(k = 0, 1, . . . , n − 1)

(4) For dLl(α, k)(k = 0, 1, . . . , n − 1), find
the optimal switch point
k∗ = kLl(k∗ = 1, 2, . . . , n − 1)

according to Theorem 3 (1)

For dRr(α, k)(k = 0, 1, . . . , n − 1), find the optimal
switch point k∗ = kRr(k∗ = 1, 2, . . . , n − 1)

according to Theorem 3 (4)

(5) Substitute k∗ = kLl into Eq. (30) and get
the function fLl(α, k)

Substitute kRr into Eq. (33), and get the function
fRr(α, k)

(6) Write the minimal relative closeness for
left region RCLl(α) with Eq. (38)

Write the maximal relative closeness for right region
RCRr(α) with Eq. (41)

(7) Repeat Steps (2–6) until all the
subsections have been computed

(8) Combine functions RCLl(α)

with RCRr(α) together, and picture R̃C
U

(α)

Table 2 The process of

computing the LMF R̃C
L

for
IT2 FSs-based fuzzy relative
closeness

Step Algorithm for RCLr(α) Algorithm for RCRl(α)

(1) Judge whether there exists
intersection between fuzzy
assessments
air (α)(i = 1, 2, . . . , n), if they
do, divide the air (α) into
different subsections, then go to
Step (2), respectively

Judge whether there exists
intersection between fuzzy
assessments
bil (α)(i = 1, 2, . . . , n), if they
do, divide the bil (α) into
different subsections, then go to
Step (2), respectively

(2) Sort one subsection
air (α)(i = 1, 2, . . . , n) in
increasing order

Sort one subsection
bil (α)(i = 1, 2, . . . , n) in
increasing order

(3) According to Eq. (43), construct
left difference functions
dLr(α, k)(k = 0, 1, . . . , n − 1)

According to Eq. (44), construct
right difference functions
dRl(α, k)(k = 0, 1, . . . , n − 1)

(4) For dLr(α, k)(k = 0, 1, . . . , n − 1),
find the optimal switch point
k∗ = kLr(k∗ = 1, 2, . . . , n − 1)

according to Theorem 3 (2)

For dRl(α, k)(k = 0, 1, . . . , n − 1),
find the optimal switch point
k∗ = kRl(k∗ = 1, 2, . . . , n − 1)

according to Theorem 3 (3)

(5) Substitute k∗ = kLr into Eq. (31),
and get the function fLr(α, k)

Substitute k∗ = kRl into Eq. (32),
and get the function fRl(α, k)

(6) Write the maximal relative
closeness for left region RCLr(α)

with Eq. (39)

Write the minimal relative
closeness for right region
RCRl(α) with Eq. (40)

(7) Repeat Steps (2–6) until all the
subsections have been computed

(8) Combine functions RCLr(α)

with RCRl(α) together, and picture R̃C
L
(α)
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Table 3 Linguistic variables for the evaluation of the criteria

Linguistic variables IT2 FSs

Very low (VL) ((0, 0, 0, 0.1; 1), (0, 0, 0, 0.05; 0.9))

Low (L) ((0, 0.1, 0.1, 0.3; 1), (0.05, 0.1, 0.1, 0.2; 0.9))

Medium low (ML) ((0.1, 0.3, 0.3, 0.5; 1), (0.2, 0.3, 0.3, 0.4; 0.9))

Medium (M) ((0.3, 0.5, 0.5, 0.7; 1), (0.4, 0.5, 0.5, 0.6; 0.9))

Medium high (MH) ((0.5, 0.7, 0.7, 0.9; 1), (0.6, 0.7, 0.7, 0.8; 0.9))

High (H) ((0.7, 0.9, 0.9, 1; 1), (0.8, 0.9, 0.9, 0.95; 0.9))

Very high (VH) ((0.9, 1, 1, 1; 1), (0.95, 1, 1, 1; 0.9))

Step 3. Define the positive ideal solution A∗ = {1, 1, . . . ,

1} and the negative ideal solution A− = {0, 0, . . . , 0}.
Step 4. Write the normalized average evaluations and
weights withα(α ∈ [0, 1]) level as: ail(α), air (α), bil(α),
bir (α), cil(α), cir (α), dil(α) and dir (α).
Step 5. Compute the UMF R̃C

U
j (α) of IT2 FSs-based

fuzzy relative closeness according to Table 1.
Step 6. Compute the LMF R̃C

L
j (α) of IT2 FSs-based

fuzzy relative closeness according to Table 2.
Step 7. Draw the closed form of IT2 FSs-based fuzzy

relative closeness ˜̃RC
∗
j according to the final expressions

in Steps 5–6.

Step 8. Computing the ranking values Rank(˜̃RC
∗
j ) accord-

ing to Eq. (2), the bigger the Rank(˜̃RC
∗
j ) is, the better

alternative A j .

5 Example

The example was investigated by Chen and Lee (2010),
there are three alternatives A1−3 evaluated against four cri-
teria C1−4 by three decision makers D1−3. The linguistic
evaluation variables are duplicated in Table 3. Tables 4, 5
show the average weights and assessments provided by the
three decision makers. The aggregated fuzzy numbers are
obtained by averaging the fuzzy opinions of the three deci-
sion makers, that is ˜̃w j = 1

3

∑3
k=1

˜̃wk
j ( j = 1, 2, . . . , 4) and

˜̃xi j = 1
3

∑3
k=1

˜̃xk
i j (i = 1, 2, 3; j = 1, 2, . . . , 4), where ˜̃wk

j

and ˜̃xk
i j are the relative weights and the ratings given by the

kth decision maker, respectively.

5.1 Computing process

Here, we take alternative A1 as an example, and show the
process of computing the IT2 FSs-based fuzzy relative close-
ness in an analytical way.

Step 1 Construct the decision matrix X̃ , and normalize the
fuzzy average decision matrix, which is shown in Table 5.
Step 2 Construct the weighting matrix W̃ , and normal-

ize the fuzzy average weighting matrix as ˜̄W = (w̃i )1×n

shown in Table 4.
Step 3 Define the positive ideal solution A∗ = {1, 1, . . . , 1}
and the negative ideal solution A− = {0, 0, . . . , 0}.
Step 4 Write the average fuzzy evaluations for alternative
A1 and the average weights with α level, respectively.

x̃U
11(α) = (0.57 + 0.2α, 0.93 − 0.16α),

x̃U
21(α) = (0.77 + 0.16α, 1 − 0.07α),

x̃U
31(α) = (0.77 + 0.16α, 1 − 0.07α),

x̃U
41(α) = (0.77 + 0.16α, 1 − 0.07α),

w̃U
1 (α) = (0.83 + 0.14α, 1 − 0.03α),

w̃U
2 (α) = (0.83 + 0.14α, 1 − 0.03α),

w̃U
3 (α) = (0.43 + 0.2α, 0.83 − 0.2α),

w̃U
4 (α) = (0.77 + 0.16α, 1 − 0.07α).

Step 5 Compute the fuzzy relative closeness RCLl for alter-
native A1.

(1) Sort the aggregated elements ail(α) (i = 1, 2, 3, 4)

in increasing order. According to the expressions of
the aggregated elements ail(α) (i = 1, 2, 3, 4), the
graph can be drawn as Fig. 4. For any α ∈ [0, 1], it
follows that a1l (α) ≤ a2l(α) = a31(α) = a41(α).
Hence, the order of ail(i = 1, 2, 3, 4) need not be
changed.

(2) Construct the left difference functions dLl(α, k) (k =
0, 1, 2, 3) for alternative A1. According to Eq. (42), the
difference functions dLl(α, k)(k = 0, 1, 2, 3) for alter-
native A1 are denoted as Eq. (46)–(48), which are also
shown in Fig. 5.

Table 4 The relative weights of
the five criteria provided by
decision makers

Criteria D1 D2 D3 Average IT2 FSs

C1 VH H VH ((0.83, 0.97, 0.97, 1; 1), (0.9, 0.97, 0.97, 0.98; 0.9))

C2 H VH VH ((0.83, 0.97, 0.97, 1; 1), (0.9, 0.97, 0.97, 0.98; 0.9))

C3 M MH MH ((0.43, 0.63, 0.63, 0.83; 1), (0.53, 0.63, 0.63, 0.73; 0.9))

C4 VH H H ((0.77, 0.93, 0.93, 1; 1), (0.85, 0.93, 0.93, 0.97; 0.9))

123

Author's personal copy



X. Sang, X. Liu

Table 5 The evaluation of the three candidates by all decision makers

Criteria Alternatives Decision makers Average IT2 FSs

D1 D2 D3

C1 A1 MH H MH ((0.57, 0.77, 0.77, 0.93; 1), (0.67, 0.77, 0.77, 0.85; 0.9))

A2 H MH H ((0.63, 0.83, 0.83, 0.97; 1), (0.73, 0.83, 0.83, 0.9; 0.9))

A3 VH H MH ((0.7, 0.87, 0.87, 0.97; 1), (0.78, 0.87, 0.87, 0.92; 0.9))

C2 A1 H VH H ((0.77, 0.93, 0.93, 1; 1), (0.85, 0.93, 0.93, 0.97; 0.9))

A2 MH H VH ((0.7, 0.87, 0.87, 0.97; 1), (0.78, 0.87, 0.87, 0.92; 0.9))

A3 VH VH H ((0.83, 0.97, 0.97, 1; 1), (0.9, 0.97, 0.97, 0.98; 0.9))

C3 A1 VH H H ((0.77,0.93,0.93,1;1),(0.85,0.93,0.93,0.97;0.9))

A2 H VH VH ((0.83, 0.97, 0.97, 1; 1), (0.9, 0.97, 0.97, 0.98; 0.9))

A3 M MH MH ((0.43, 0.63, 0.63, 0.83; 1), (0.53, 0.63, 0.63, 0.73; 0.9))

C4 A1 VH H H ((0.77, 0.93, 0.93, 1; 1), (0.85, 0.93, 0.93, 0.97; 0.9))

A2 H VH H ((0.83, 0.97, 0.97, 1; 1), (0.9, 0.97, 0.97, 0.98; 0.9))

A3 H VH VH ((0.77, 0.93, 0.93, 1; 1), (0.85, 0.93, 0.93, 0.97; 0.9))

0.2

0.4

0.6

0.8

a

0.2 0.4 0.6 0.8 1
α0

a1l(α)
a2l(α)/a3l(α)/a4l(α)

Fig. 4 The plots of ail (α) for alternative A1

−0.1

0.1

0.2

d

0.2 0.4 0.6 0.8 1
α

0

dLl(α, 0)

dLl(α, 1)/dLl(α, 2)/dLl(α, 3)

Fig. 5 The plots of dLl(α, k) for alternative A1

dLl(α, 0) =
4∑

i=2

(a1l − ail)(2a1lail − a1l − ail)c
2
il

= (a1l − a2l)(2a1la2l − a1l − a2l)c
2
2l

+ (a1l − a3l)(2a1la3l − a1l − a3l)c
2
3l

+ (a1l − a4l)(2a1la4l − a1l − a4l)c
2
4l

= 0.13558 + 0.00022α5 + 0.00102α4

− 0.00498α3 − 0.03225α2 − 0.00521α (46)

dLl(α, 1) =
1∑

i=1

(a2l − ail)(2a2lail − a2l − ail)d
2
ir

+
5∑

i=3

(a2l − ail)(2a2lail − a2l − ail)c
2
il

= (a2l − a1l)(2a2la1l − a2l − a1l)d
2
1r

+ (a2l − a3l)(2a2la3l − a2l − a3l)c
2
3l

+ (a2l − a4l)(2a2la4l − a2l − a4l)c
2
4l

= −0.08878 + 0.00006α4 − 0.00262α3

+ 0.0063α2 + 0.04482α (47)

dLl(α, 2) = dLl(α, 3) = dLl(α, 1) (48)

(3) Find the switch point of difference function dLl(α, k∗) for
alternative A1. From Fig. 5, it can easily be seen that for
any α ∈ [0, 1], it follows dLl(α, 0) ≥ 0 and dLl(α, 1) <

0. According to the conclusions of Theorem 3(1), it is
obvious that if α ∈ [0, 1], such that the switch point
k∗ = kLl = 1.

(4) Write the expression of function fLl(α) for alternative
A1. According to Eq. (30), when kLl = 1, the closed-
form expression of function fLl(α) can be denoted as
Eq. (49).

fLl(α) =

1∑
i=1

(dir (ail − 1))2 +
5∑

i=2
(cil (ail − 1))2

1∑
i=1

(dir ail )2 +
5∑

i=2
(cilail )2

= 0.26249+0.00222α4+0.00783α3+0.04464α2 − 0.25662α

1.19451+0.00222α4+0.03546α3+0.27503α2+0.95576α
.

(49)
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(5) Write the analytical solution to R̃CLl(α) for alternative
A1. Substitute Eq. (49) in Eq. (38), for ∀α ∈ [0, 1],
the closed-form function of fuzzy relative closeness
R̃CLl(α) can be expressed as Eq. (50).

RCLl(α)

= 1

1+
√

0.26249+0.00222α4+0.00783α3+0.04464α2−0.25662α
1.19451+0.00222α4+0.03546α3+0.27503α2+0.95576α

,

α ∈ [0, 1]. (50)

(6) Write the analytical solution to fuzzy relative close-
ness R̃CRr(α) for alternative A1. Similarly, the maximal
fuzzy relative closeness RCRr for alternative A1 can be
shown as Eq. (51).

RCRr(α)

= 1

1+
√

0.00338+0.00073α4+0.00378α3+0.03611α2+0.01657α
3.28473+0.00073α4−0.0089α3+0.09888α2−0.91246α

,

α ∈ [0, 1]. (51)

(7) Draw the closed form of UMF R̃C
U
1 for alternative A1.

Combined with Eqs. (50) and (51) together, the closed
form of UMF R̃C

U
for alternative A1 can be written as

Eq. (52).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

RCLl(α) = 1

1+
√

0.26249+0.00222α4+0.00783α3+0.04464α2−0.25662α

1.19451+0.00222α4+0.03546α3+0.27503α2+0.95576α

,

α ∈ [0, 1];
RCRr(α) = 1

1+
√

0.00338+0.00073α4+0.00378α3+0.03611α2+0.01657α

3.28473+0.00073α4−0.0089α3+0.09888α2−0.91246α

,

α ∈ [0, 1].
(52)

Step 6 Compute the LMF R̃C
L
1 of relative closeness for

alternative A1. According to the computing process in
Table 2, the closed-form function of fuzzy relative close-
ness R̃C

L
1 can be obtained as Eq. (53).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

RCLr(α) = 1

1+
√

0.14539+0.00021α4+0.00225α3+0.01748α2−.11196α

1.74131+0.00021α4+0.00695α3+0.10378α2+0.70266α

,

α ∈ [0, 1];
RCRl(α) = 1

1+
√

0.02042+0.00008α4+0.00077α3+0.01437α2+0.031α

2.87556+0.00008α4−0.00159α3+0.03131α2−0.48538α

,

α ∈ [0, 1].
(53)

Step 7 With the same method, compute the whole closed-
form function of fuzzy relative closeness for alternatives

0.2

0.4

0.6

0.8

1

μx

0.7 0.75 0.8 0.85 0.9 0.95
α

A2
A3
A1

Fig. 6 The fuzzy relative closeness for the three candidates

A2 and A3. The pictures of IT2 FSs-based fuzzy relative
closeness for the three alternatives are shown in Fig. 6.
Step 8 Using Eq. (2), the final ranking values of the
IT2 FSs-based fuzzy relative closeness for the three
alternatives are computed as: Rank(A1) = 8.83836,
Rank(A2) = 8.95285, Rank(A3) = 8.75709. That is the
best alternative is A2, and the ranking of the alternatives
is

A2 � A1 � A3.

5.2 Discussion

Compared with Chen and Lee (2010), it is coincidental that
the ranking results are the same. But the proposed method is
completely different from that of Chen and Lee (2010), the
differences of which are summarized as follows.

(1) It realizes the actual sense of IT2 FSs-based TOPSIS
method computation. As the IT2 FSs formats are kept
through the whole computing process when solving the
fuzzy relative distance functions for the three alterna-
tives, and the defuzzification is dealt with at the end
of the computing process, instead of the defuzzification
from the very beginning of Chen and Lee (2010).

(2) It is accurate. As the fractional NLP models consider all
conditions when computing the IT2 FSs-based fuzzy rel-
ative closeness for the three alternatives. And the switch
points of which are recognized through solving differ-
ence functions. By computing the algebraic formula
of the object function within α ∈ [0, 1], the analyti-
cal solution to IT2 FSs-based TOPSIS model can also
be obtained, which avoids information loss in comput-
ing process. However, in Chen and Lee (2010), after
the defuzzification of the elements in weighted decision
matrix, the crisp relative closeness is computed through
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traditional TOPSIS method, which cause decision infor-
mation loss.

(3) Moreover, a global accurate picture of the IT2 FSs-based
fuzzy relative closeness for the three alternatives can also
be, respectively, obtained, which provides a possibility
to further analyze the properties of the results.

6 Conclusion

In this paper, we have proposed an analytical solution to
IT2 FSs-based TOPSIS model for solving the fuzzy MADM
problems. First, we have created the fractional NLP prob-
lems to find the fuzzy relative closeness. Second, based on
the principle of KM algorithm, we have transformed the frac-
tional NLP problem into identifying the switch points of α

levels. Finally, by computing the algebraic formula of object
function within α ∈ [0, 1], we obtained the analytical solu-
tion to IT2 FSs-based TOPSIS model. Moreover, we have
also discussed some properties of the proposed method. The
main difference from Chen and Lee (2010) is that it keeps
IT2 FSs format for the evaluations and weights in the whole
computing process, and realizes the actual sense of IT2 FSs-
based TOPSIS solution. It is accurate, as the computation
is a continuous process and all the switch points are found
through solving expressions. Moreover, a global picture of
the fuzzy relative closeness can also be obtained for further
analysis.
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7 Appendix A: Proof of Theorem 1

Proof Let

ρ(y) =
(

1

y
− 1

)2

, (54)

where y is a continuous variable, and y ∈ (0, 1].
For Eq. (54), the derivative of function ρ(y) to y can be

written as:

∂ρ(y)

∂y
= − 1

y2

(
1

y
− 1

)
≤ 0.

It is obvious that ρ(y) is an monotonically decreasing
function with respect to y.

Let y ≡ ˜̃RC, substitute Eq. (11) into Eq. (54), and get

˜̃ρ(˜̃RC) =
(

1
˜̃RC

− 1

)2

=

n∑
i=1

(
wi ( ˜̃xi − 1)

)2

n∑
i=1

(wi ˜̃xi )2
= ˜̃f ( ˜̃x). (55)

From Eq. (15), the derivative of function f ( ˜̃x) with ˜̃x ∈
(0, 1] is written as:

∂ f ( ˜̃x)

∂ ˜̃x =
2w2

i ( ˜̃xi −1)
n∑

i=1
(wi ˜̃xi )

2 − 2w2
i
˜̃xi

n∑
i=1

(wi ( ˜̃xi − 1))2

(
n∑

i=1

(
wi ˜̃xi

)2
)2

≤ 0. (56)

It is concluded that f ( ˜̃x) is a decreasing function with vari-
able ˜̃x .

From the conclusions of Eqs. (55), (56), it is deduced that
when ˜̃x lies in the left region x̃ L and reaches its minimum
(maximum) value, f̃ L(x̃ L) reaches its maximum (minimum)
value, and R̃C

L
(x̃ L) reaches its minimum (maximum) value;

when ˜̃x lies in the right region x̃ R and reaches its minimum
(maximum) value, f̃ R(x̃ R) reaches its maximum (minimum)
value, and R̃C

R
(x̃ R) reaches its minimum (maximum) value.

The proof of Theorem 1 is completed. �	

8 Appendix B: Proof of Theorem 2

Proof For simplification, we denote ail(α), c̃i (α), cil(α),
cir (α), d̃i (α), dil(α), dir (α) as ail , c̃i , cil , cir , d̃i , dil , dir ,
respectively.

(1) Let

gLl(c̃, d̃) ≡

kLl∑
i=1

(
d̃i (ail − 1)

)2 +
n∑

i=kLl+1
(c̃i (ail − 1))2

kLl∑
i=1

(
d̃i ail

)2 +
n∑

i=kLl+1
(c̃i ail)

2

,

(57)

where ail is an increasing order, c̃i ≡ [c̃kLl+1,l , c̃kLl+2,l ,

. . . , c̃kn ,l ]T , d̃i ≡ [d̃1, d̃2, . . . , d̃kLl ]T , c̃i ∈ [cil , cir ] and
d̃i ∈ [dil , dir ].

Correspondingly, Eq. (26) can be rewritten as:

fLl(α) = min
∀c̃i ∈[cil ,cir ]
∀d̃i ∈[dil ,dir ]

gLl(c̃, d̃)
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In Eq. (24), it is concluded that there exists gLl(c̃, d̃) =
fLl(α) satisfying

akLl,l ≤ gLl(c̃, d̃) ≤ akLl+1,l

Next, it is proved that gLl(c̃, d̃) reaches its minimum only on
condition that Eq. (57) holds.

(a) When i ≤ kLl and akLl,l ≤ gLl(c̃, d̃). According to Eq.
(57), the derivative of function gLl(c̃, d̃) to di can be
expressed as:

∂gLl(c̃, d̃)

∂di
=

2dir

(
(akil − 1)2 − (akil )

2gLl(c̃, d̃)
)

kLl∑
i=1

(dir ail)
2 +

n∑
i=kLl+1

(cilail)
2

≤
2dir

(
1 −

(
ail ail−ail

ail akLl,l−akLl,l

)2
)

kLl∑
i=1

(dir ail)
2 +

n∑
i=kLl+1

(cilail)
2

.

As ail is an increasing order and i < kLl, it is concluded
that ail ≤ akLl,l , and ailail − ail ≥ ailakLl,l − akLl,l , that

is 1 −
(

ail ail−ail
ail akLl,l−akLl,l

)
≤ 0.

Therefore, when kil < kLl, the derivative of function

gLl(c̃, d̃) to di
∂gLl(c̃,d̃)

∂di
≤ 0. On the other word, gLl(c̃, d̃)

decreases when di (i ≤ kLl) increases. Hence, the com-
putation of minimal gLl(c̃, d̃) must use the maximal
di (i ≤ kLl) as stated in Eq. (30).

(b) When i ≥ kLl and gLl(c̃, d̃) ≤ akLl+1,l . According to
Eq. (57), the derivative of function gLl(c̃, d̃) to ci can be
denoted as:

∂gLl(c̃, d̃)

∂ci
=

2cir

(
(akil − 1)2 − (akil )

2gLl(c̃, d̃)
)

kLl∑
i=1

(cir ail)
2 +

n∑
i=kLl+1

(cilail)
2

≥
2cir

(
1 −

(
ail ail−ail

ail akLl,l−akLl,l

)2
)

kLl∑
i=1

(dir ail)
2 +

n∑
i=kLl+1

(cilail)
2

.

As akil is an increasing order and kil > kLl, it is concluded
that akil (α j ) ≥ akLl , and ailail − ail ≤ ailakLl,l − akLl,l , that

is 1 −
(

ail ail−ail
ail akLl,l−akLl,l

)
≥ 0.

Therefore, when i > kLl, the derivative of function

gLl(c̃, d̃) to di
∂gLl(c̃,d̃)

∂di
≥ 0. On the other word, gLl(c̃, d̃)

increases when di (i ≤ kLl) increases. Hence, the computa-
tion of minimal gLl(c̃, d̃) must use the minimal di (i ≤ kLl)

as stated in Eq. (30).

Hence,

f ∗
Ll(α, k)=min

kLl∑
i=1

(dir (ail − 1))2+
n∑

i=kLl+1
(cil(ail − 1))2

kLl∑
i=1

(dir ail)
2 +

n∑
i=kLl+1

(cilail)
2

.

This completes the proof of Theorem 2 (1).
As the proofs of Theorem 2 (2–4) are similar to that of

Theorem 2 (1), they are omitted here.
This completes the proof of Theorem 2. �	

9 Appendix C: Proof of Theorem 3

Proof For simplification, we denote ail(α), c̃i (α), cil(α),
cir (α), d̃i (α), dil(α), dir (α) as ail , c̃i , cil , cir , d̃i , dil , dir ,
respectively.

(1) The proof of Theorem 3 (1).

For Eq. (30), when k = 1, 2, . . . , n − 1, it is right that

fLl(k) =

kLl∑
i=1

(dir (ail − 1))2 +
n∑

i=kLl+1
(cil(ail − 1))2

kLl∑
i=1

(dir ail)2 +
n∑

i=kLl+1
(cilail)2

,

fLl(k + 1) =

kLl+1∑
i=1

(dir (ail − 1))2 +
n∑

kLl+3
(cil(ail − 1))2

kLl+1∑
i=1

(dir ail)2 +
n∑

kLl+3
(cilail)2

.

Hence, the difference of fLl(k + 1)− fLl(k) can be obtained
as Eq. (58).

fLl(k + 1) − fLl(k)

=
⎧⎨
⎩
⎡
⎣kLl+1∑

i=1

(dir (ail − 1))2 +
n∑

i=kLl+2

(cil (ail − 1))2

⎤
⎦

×
⎡
⎣ kLl∑

i=1

(dir ail )
2 +

n∑
i=kLl+1

(cilail )
2

⎤
⎦

−
⎡
⎣ kLl∑

i=1

(dir (ail − 1))2 +
n∑

i=kLl+1

(cil (ail − 1))2

⎤
⎦

×
⎡
⎣kLl+1∑

i=1

(dir ail )
2 +

n∑
i=kLl+2

(cilail )
2

⎤
⎦
⎫⎬
⎭
/

⎧⎨
⎩
⎡
⎣kLl+1∑

i=1

(dir ail )
2 +

n∑
i=kLl+2

(cilail )
2

⎤
⎦
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×
⎡
⎣ kLl∑

i=1

(dir ail )
2 +

n∑
i=kLl+1

(cilail )
2

⎤
⎦
⎫⎬
⎭

= (d2
kLl+1,r − c2

kLl+1,l )

×
[ kLl∑

i=1

(akLl+1,l − ail )(2akLl+1,l ail − akLl+1,l − ail )d
2
ir

+
n∑

i=kLl+2

(akLl+1,l − ail )(2akLl+1,l ail − akLl+1,l − ail )c
2
il

]/

⎡
⎣
⎛
⎝kLl+1∑

i=1

(dir ail )
2 +

n∑
i=kLl+2

(cilail )
2

⎞
⎠

×
⎛
⎝ kLl∑

i=1

(dir ail )
2 +

n∑
i=kLl+1

(cilail )
2

⎞
⎠
⎤
⎦ . (58)

As cil ∈ [0, 1], dir ∈ [0, 1] and d2
kLl+l > c2

kLl+l , the
direction of fLl(k + 1) − fLl(k) is determined by the sign of

kLl∑
i=1

(akLl+1,l − ail)(2akLl+1,lail − akLl+1,l − ail)d
2
ir

+
n∑

i=kLl+2

(akLl+1,l − ail)(2akLl+1,lail − akLl+1,l − ail)c
2
il .

To simplify the notation in the rest of the proof, dLl(k) is
defined as Eq. (59).

dLl(k)=
kLl∑
i=1

(akLl+1,l −ail)(2akLl+1,lail − akLl+1,l − ail)d
2
ir

+
n∑

i=kLl+2

(akLl+1,l −ail)(2akLl+1,lail − akLl+1,l − ail)c
2
il .

(59)

As a1l ≤ a2l ≤ · · · ≤ anl , the difference of dLl(k)−dLl(k−1)

can be computed as Eq. (60).

dLl(k) − dLl(k − 1) = (akLl+1,l − akLl,l)

×(2akLl+1,lakLl,l − akLl+1,l − akLl,l)(d
2
kLl+1,l + c2

kLl+1,l)

+
kLl−1∑
i=1

(
(akLl+1,l − ail)

×
(
(2ail − 1)(akLl+1,l − ail) − 2a2

il

)
d2

ir

)

+
n∑

i=kLl+2

(
(akLl+1,l −ail)

(
(2ail −1)(akLl+1,l −ail)−2a2

il

)
c2

il

)
.

(60)

For (akLl+1,l − akLl,l)(2akLl+1,lakLl,l − akLl+1,l − akLl,l)

(d2
kLl+1,l + c2

kLl+1,l), ail is an increasing order, so akLl+1,l

−akLl > 0. And ail ∈ [0, 1], for all i = 1, 2, . . . , n, it fol-
lows that a2

il ≤ ail .

Hence, it is easy to prove that

2akLl+1,lakLl − akLl+1,l − akLl

< 2akLl+1,lakLl − a2
kLl+1,l − a2

kLl

= −(akLl+1,l − akLl)
2 ≤ 0.

Combined with the conclusions together, it is right that
(akLl+1,l − akLl)(2akLl+1,lakLl − akLl+1,l − akLl) (d2

kLl+1,r +
c2

kLl+1,l) ≤ 0.

Meanwhile, it follows that

(2ail − 1)(akLl+1,l − ail) − 2a2
il

= 2a2
il + 2ail(akLl+1,l + ail) − (akLl+1,l + ail)

= −2
[
a2

il − (akLl+1,l + ail)ail + (akLl+1,l + ail)
2

4

+ (akLl+1,l + ail)
2

2
− (akLl+1,l + ail)

]

= −2
(
ail − akLl+1,l + ail

2

)2 −
(

1 − akLl+1,l + ail

2

)

(akLl+1,l + ail).

Note that 0 ≤ akLl < akLl+1,l ≤ 1, it is obvious to get that

0 ≤ akLl+1,l+ail

2 ≤ 1 and 1 − akLl+1,l+ail

2 ≥ 0.
Hence, (2ail −1)(akLl+1,l −ail)−2a2

il ≤ 0, that is ((2ail −
1)(akLl+1,l − ail) − 2a2

il)c
2
il ≤ 0.

Correspondingly, it can easily be seen that

kLl−1∑
i=1

(akLl+1,l −ail)
(
(2ail −1)(akLl+1,l −ail)−2a2

il

)
c2

il ≤ 0,

and

n∑
i=kLl+2

(akLl+1,l−ail)
(
(2ail−1)(akLl+1,l−ail)−2a2

il

)
c2

il ≤ 0.

Coupled with the conclusions proved above, it can easily be
shown that

dLl(k) − dLl(k − 1) ≤ 0,

That is dLl(k) is a decreasing function with respect to k.
Combined with Eq. (60), Eq. (58) can also be rewritten

as:

fLl(k + 1) − fLl(k) = cLl(k)dLl(k), (61)

where

cLl(k) = (d2
ir − c2

il)

/⎡
⎣
⎛
⎝k+1∑

i=1

(dir ail)
2 +

n∑
i=kLl+2

(cilail)
2

⎞
⎠
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×
⎛
⎝ k∑

i=1

(dir ail)
2 +

n∑
i=kLl+1

(cilail)
2

⎞
⎠
⎤
⎦

≥ 0.

Since

dLl(0) =
n∑

i=2

(a1l − ail)(2a1lail − a1l − ail)c
2
il ≥ 0,

dLl(n − 1) =
n−1∑
i=1

(anl − ail)(2anlail − anl − ail)d
2
ir ≤ 0.

With the decreasing property of dLl(k) for k, there must
exist k = kLl(kLl = 1, 2, . . . , n − 1), such that for any
k = 0, 1, . . . , kLl, dLl(k) ≥ 0, and for any k = kLl, kLl +
1, . . . , n − 1, dLl(kLl) < 0.

In Eq. (61), it follows that for any k = 0, 1, . . . , kLl,
fLl(k+1)− fLl(k) ≥ 0, and for any k = kLl, kLl+1, . . . , n−
1, fLl(k + 1) − fLl(k) < 0. So, fLl(kLl) is the global maxi-
mum point with kLl = k∗.

This completes the proof of Theorem 3 (1).
As the proofs of Theorem 3 (2–4) are similar to that of

Theorem 3 (1), they are omitted here.
This completes the proof of Theorem 3. �	
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